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I. INTRODUCTION

In this paper we present theoretical results for computational procedures developed to
estimate damping in distributed parameter models of flexible structures. These efforts
are part of continuing investigatidns of damping models for composite material structures
that have been the focus of our attention for the past several years. Our interest in
these models grew out of questions related to control and stabilization of such structures.
To solve problems related to design, control and stabilization of large flexible structures,
one requires a) an accurate mathematical model of the dynamics of the structure, and
b) a method or algorithm for estimating the parameters in the model. Most structures,
including the simplest of beams, exhibit some type of damping behavior, and it is important
for the development of accurate models to account for the damping mechanism. Various
models have been proposed for such damping mechanisms (see [CP] and [R}), each grounded
upon reasonable physical principles and yet leading to very different mathematical models.
It is important then, in the effort to develop accurate models for flexible structures, to study
the various damping mechanisms and their implications for estimation, stabilization, and
control problems. Recently, Banks, Inman et al ([BWIC]) reported on their study of
Kelvin-Voigt and viscous damping in modeling and parameter estimation for composite
beams. In related investigations Banks and Ito (see [BI]) developed a general framework
for parameter estimation (including numerical convergence results) for a large class of
beam models with damping (including viscous, Kelvin-Voigt, spatial-hysteresis). A notable
exception that cannot be treated using results of these studies is viscoelastic damping of
Boltzmann type (or “time hysteresis”). Our focus in this note will be on this type of
damping. We discuss below theoretical and computational results for the estimation of
parameters in a model (described in section II) of a beam with tip body and Boltzmann
tvpe damping. We illustrate use of the resulting procedures with data from experiments

involving a composite material beam with attached tip body.




II. MATHEMATICAL FORMULATION

The mathematical model of interest to us is the following system for the transverse
vibrations of a cantilevered Euler-Bernoulli beam with tip body and Boltzmann damping:

2 0
pun(t,z)+ —aa— {Efuu(t T)— /_r g(s)uz(t + s,m)ds} = f(t,z) (2.1)

O<r<l, t> 0,

u(t,0) = g%(t,()) =0, t>0,

’) 0
mca S0+ (T + 777c2)0 gt;l(t D+ {Eluu —-/ g(s)uz(t +.s,:c)ds}

; 82 0 0%u 0 0
i Mo —(t, ) + meo— —(t,1) — 3a {EIu” - /_r g(s) uz.(t +s,7) ds} L:z = h(t)

u(0,z) = u4(0,2) =0, O0<z <l

Here u(t, z) is the transverse displacement at time ¢ and position z along the beam. Also, p
is the linear mass density, ET is the stiffness, and f(¢, z) represents external applied forces.
The boundary conditions represent a beam clamped at £ = 0 and free at z = I, with
the tip body dynamics governed by (2.2). We assume that the tip body has mass m and
moment of inertia J about its center of mass which is assumed to be located at a distance
¢ from the tip of the beam along the beam’s axis (see [BR] for a more detailed discussion of
models for beams with tip bodies). The functions k(t) and h(t) denote externally applied
moments (k) and transversally applied forces (1) exerted on the tip body. The delay length
7 (thus the terminology “time hysteresis”) is positive, possibly infinite. In this paper we

assume that the kernel g(s) (the damping kernel) has the form

aehs

9() = oy

-r<s<0,

where a, f are positive constants, and p is fixed and satisfies 0 < p < 1.

Let ¢ = (EI a,B,p,m,J) € Q C R® denote the parameters of interest, where the

admissible parameter set @ is a compact subset of R®. (The theory can be modified to

include spatially varying EI, but this is not our focus here; see [BR], [BC]). It should
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be noted that we fix values for r and p rather than treat them as parameters. It is also
interesting to treat r and p as parameters, but this requires the introduction of more
complicated parameter-dependent state spaces (see [BBC] for an example of the use of
such state-spaces). We have carried out numerical studies in this direction but will defer
any discussion on this aspect of these models to a subsequent paper.

Here we show (similar in spirit to the approaches in [BR], [BGRW]) how to reformulate
(2.1) - (2.2) as an abstract Cauchy problem, and in this framework we pose the problem
of estimating q as a least-squares fit to data. Having done this, we will in the next section
discuss the construction of an approximation framework with which the estimation problem
can be solved on a computer.

To proceed, let H denote the Hilbert space R? x H°(0,!) with inner product

(M, &1, 61),(n2,€2,¢2)), = (A(m1,61), (n2,62))_, + (91, ¢2),

where throughout we denote the standard H’(0,![) inner product by (-, -)j , and A is the

2 x 2 positive definite matrix
e
p|lme J4+me?|’

Define the Hilbert space V = {(n,£,¢) € H: ¢ € H*0,l), ¢(0) =0 = ¢'(0), n =
¢(1), € = ¢'(I)}. Denoting elements of V by & = (¢(1),4'(1),¢), ¥ = (¥(1),¥'(1), ¥),
we take as the V inner product (®,¥) = (4,¢),. It is clear that V is continuously
and densely imbedded in H, and if we identify H with its dual H* we have the pivot
space framework V C H = H* C V*. Next, define the bilinear form ¢ on V x V by
o(®,¥) = (¢",4"),.

It is clear that the form ¢ i1s V-bounded and coercive. That is, there are constants

K >0, ¢; >0, so that for &, ¥ € V we have

lo(@, )| < K|2] |V

v

and

o(®,®) > cﬂ@[i . (2.4)
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Now in the usual fashion (see [Kr], [Sh]) we can define an operator A € L(V,V*) by

(48,0)  =o(d,T) (2.5)

Ve v

for all &, ¥ € V.
Next define the space
W = Ly(-1,0; V3 g0),

with norm determined by the inner product

(03,T2),, = [ ao()T2() Ta(o)), d.

-T

Here, go(s) = age?*®/(—s)P, where ag, By are fixed values allowed for ¢ in the admissible

parameter set ). As a notational convenience, for ¢ = (EI, a,,p,m,J) € Q, we mean by

¢(q)(s) the function g(q)(s) = aef?/(—s)?. We point out that by virtue of the definition
and the compactness of @, the spaces Lo(—r,0;V'; g(q)) are equivalent for all ¢ € Q. Define

the operator D : domD C W — W on the domain
domD = {F € H'(-r,0;V;g0): T(0) = 0}

by DI' = dT'/ds. Next define the state space Z =V x H x W with norm

(I) 2
(@) =|®]® +|¥)® + T .
F 1 % H w

z

Also, define the parameter dependent state operator A(gq) on the domain

o veV, I'edomD
dom Alq) = { ( “1’) 2% A(B18 + [°, o(a)(s)T(s) — B)ds) € H

r
by
d . 14
Alg) (‘1’) = (-A(%@ + 5 - 9(a)(s)(T(s) = @)ds)) : (2.6)
r v+ DI



Finally, if we define a state vector z(t) by

where U(t) = (u(t,1), u.(t,1), u(t,-)), then (2.1) - (2.2) can be reformulated as the following

equivalent abstract Cauchy problem on Z:

i(t) = Alg)=(t) + F(t), 2(0) = zo (2.7)

0
where F(t) = | F(t) | with F(t) = % (A"l (28;) ,f(t,-)) € H. Before giving a well-
0

posedness result for (2.7), we make the following assumption on the admissible parameters.

A1) There exists € > 0 such that

0
p>e¢, EI- / g(g)(s)ds > ¢ forall g € Q.

—-r

This is a physically reasonable assumption (see [Wa]), basically guaranteeing that the
structure is a solid. We shall have occasion to consider the space Z,, which is the Hilbert

space consisting of the elements of Z equipped with the inner product

0

(@2,02,T0), (82, %, T), = (BT = [ g(a)s)ds)o(@r, ®2) + p(is, 9a),

-r

+ / 9(g)(s)7(T (), Ta(s))ds,

-r

for ¢ = (El,a,B,p,m,J) € Q. Since Q is compact, one can readily see that these inner
products are equivalent on Z for all ¢ € ). Next we collect some results concerning the

operators A(g) and D which we have defined.

Theorem 2.1.
i) Under assumption Al), the operator A(q) is dissipative in Z, for each ¢ € Q. Further,
A(g) generates a Co-semigroup T(g)(t) on Z which satisfies |T(q)(t)|, < Me“*, where the

constants M,w are independent of ¢ € Q.



ii) The operator D is dissipative on W, and the resolvent (A\I — D)~! exists for A > 0.

These results follow by extending the arguments found in [FI]. We can thus conclude that
the system (2.7) is well-posed.

We may now formulate the estimation problem of interest as follows: Find ¢ € @ that
minimizes

T(a) = D_le(@)(ts, 1) = wil”. (28)

The values v; are observations of the tip velocity of the beam (obtained, say, via a laser
vibrometer) at time t;, and v(g)(¢;,1) is the fourth component of the state vector z(¢)(t)

(i.e., the first component of H‘%U(t)), where z(g)(#) is the mild solution of (2.7) given by

4mn=nwm%+AT@w—@n@a. (2.9)

That this inverse problem is well-posed will follow from the compactness of () if we show
that J is continuous in q. But in view of (2.9), under reasonable assumptions on the initial
data zo and the forcing term F(t), this follows if we show that T(§)(t)z — T(q)(t)z for

arbitrary § — q and z € Z. The following theorem provides the desired results.

Theorem 2.2. If § — q, then T(§)(t)z — T(q)(t)z for all z € Z, uniformly in bounded

t-intervals.

Proof Since the generators .A(q) are dissipative on Z,, the result follows from the well
known Trotter-Kato theorem (see [Pa]) once we show continuity in ¢ of the resolvents

Ry (A(g)). To this end, let

P

z=12(q) = \II: = R\ (A(g)) = (2.10)
and .
(?

F=ip= 1) =R (@) (2.11)



where

We must show that, for some A > w, 2 = z as § — ¢. Fix A > max{w,0}. From (2.10)
we have

A — U =¢

0

9(g)(s)(T(s) - @)ds) —y

AT - ¥ — DT = (.

/\\IJ+1A <E1@+/
P

-Tr

Substituting the first and third equations into the second, we have

0
Ao+ /13 <EI - / g(q)(s)e“ds> Ad

-

0
=n+a¢= > [ glaA[AT- D) (¢ - ) ds. (2.12)
Similarly, from (2.11) we have '
LT (EI— /0 (”)(s)e’\’ds) Ad
F 9l
10 4
=n426-3 [ o@@A[OI- D) -0 ds (213)
Define the bilinear form o) on V x V by
A@(®,0) = 3(8,9), + > (B1- [ g)edas) @) 1)

Since A > 0, it is clear that o) is V-coercive [this follows from A1) since — f_or g9(¢)(s)ds <
- ffr 9(g)(s)e**ds). That is, there exists ¢ > 0 and ) so that

c|@]? + M@ <oa(g)(®,®) forallgeQ. (2.15)

Next note that it follows from the form of g(¢)(s) that for p € H!(-r,0),

[ 1@ - s@utsas — 0 (2.16)

-T

-~J



as § — ¢. From this it follows that

D@, 9) = r(@)(2, )] < | = = Z]lo(@,9)

+ / %g(q)w - %g(qxs) Hods - K| ||,

-r

< di(g,9)-12], -1¥], (2.17)

where dx(¢,§) — O as § — g.
Now, since ¥ =¥ = A(# = &), and T =T = (1 —e**)(® — &), we will be finished with the
proof if we show that |® — &’IV — 0 as § — ¢q. To do this, we make use of the above-defined

coercive form oy. From (2.15) and (2.12) - (2.13), we have
c|® - @ + 2P - P <or(§)(@ -, -9
= [2(@)(®,8 = &) - on(0)(@, @ - 3)]
+ [oa(0)(@,@ - &) - ox(@)( 8,2 - §)]

+K [ 2ot - zo@e)|

—-r

v

/ | =9 (6) — glas

s ]

ds|® — &)IV .

Cancelling a term |® — &’[V from each side of the inequality, we obtain an estimate from

which the result follows.

Let us make a few remarks about the proof. Many proofs of convergence of a sequence
of semigroups involve the application of some version of the Trotter-Kato theorem. This
typically involves showing convergence either of the generators of the semigroups or of their
resolvents, depending upon the version of the Trotter-Kato theorem which is used. For pa-
rameter estimation problems such as we are considering here, the “resolvent convergence”
form of the Trotter-Kato theorem is preferable as it leads to convergence arguments similar
in spirit to those of the “variational approach” of finite element theory (i.e., the definition

and use of the form o). Also, for problems involving spatially varying parameters, this



version allows one to impose weaker smoothness requirements on the parameters in order
to prove convergence results (for a more detailed discussion, see [B}, [BI]).

These remarks will be relevant later in the paper when, after constructing an approxi-
mation scheme for our estimation problem, we again apply the Trotter-Kato theorem to

argue convergence of a sequence of approximating semigroups.

I1II. APPROXIMATION FRAMEWORK

Constructing a finite dimensional approximation scheme for the parameter estimation
problem (2.8) - (2.9) involves approximating the state operator A(q) and the state space
Z. (Were @ also infinite dimensional, which is often the case for estimation problems,
we would also need finite dimensional spaces Q" to approximate (). Treatment of this
case is possible but we will not pursue it here.) We observe that approximating .A(¢) and
Z involves two stages - approximation in the spatial variable, and approximation in the
delay variable. We will see that the two approximation stages are independent, so that
our task in constructing a scheme for (2.8) - (2.9) reduces to choosing a reasonable spatial
approximation (such as finite elements) and a reasonable delay approximation scheme
(there are several in the literature (see [BB], [BK], [IK])). That is, there is no conditional
relationship between the spatial and delay variable approximations. For definiteness, we
use the index N for the spatial variable, and M for the delay variable.

Let us consider first the approximation in the spatial variable. This amounts to choosing
a sequence of finite dimensional spaces H" satisfying HY C V C H which approximate the
spaces V and H (see A2) below). Once the H" are given, the rest of the approximation in
the spatial variable follows naturally. That is, the form o defines operators A" : HY — H”
by

Y

(A7®,7)  =o0(2,7) forall ®,% ¢ H".

Also, define spaces W» C W by W¥ = L,(-r,0;H";g90) and Z" C Z by
Z¥ = HY x H¥ x W». Let PY :H — HY P} :V — HY and PJ : W — W¥

denote the respective orthogonal projections, and define the operator D" on the domain

domD" = (domD) N W"



by
DT = DT.

Finally, define the state operator 4¥(¢) on the domain

¢
domA"(q)z{ v |ez": FEdomDN}

T
by
o ¥
A | | = [ —ELAM® -1 2 g(q)(s)AN(T(s) — @)ds | . (3.1)
T ¥+ DT

We note that each A¥(q) generates a Cy-semigroup on Z*" (this involves a slight modifi-
cation of the proof that A4(q) generates a Cy-semigroup).

Next, we consider approximation in the delay variable. That is, we apply one of several
schemes in the literature for delay equations to the operators A¥(¢) and spaces Z". This
amounts to defining ( for each N) finite dimensional subspaces W** C W*" and operators
DNM o WM, WNM . However, we are interested in imposing conditions on the delay
variable approximation which are independent of the spatial approximation (hence inde-
pendent of N). In order to do this, we will consider the generic space W = Ly(—r,0; R; go),

where R = R!, and the generic operator D defined on the domain

domD = {w € H'(-r,0;R;g0): w(0)= 0}

- dw

Dw = T
A delay approximation scheme consists of finite dimensional subspaces W* C W and
operators D™ : WM — W™ satisfying certain conditions (see A3) and A4) below) which
are independent of N. However, although W* and D™ are independent of N, for each N

they define in a natural way subspaces W"» C W* and operators D™ : WM — PW/NAM,

That is, suppose

WM = {ZJ wjed : w; € R},

10



where e} are given basis functions for W™ Then define WN* by

WM ={Ejr‘je§’: F]‘EHN}. (32)

If HY = { >.;aiBY 1a; € R}, where the BY are basis functions for H", then any element

I' of WH'M™ can be written as

D=3l =%; (TiadBr)ef, al€R.

Hence we define DM by
D( = (2 a{B:”)e;”) =5 (D¥(;aler)) BE. (33)

In a similar manner, the orthogonal projection I : W — W™ defines naturally the
orthogonal projection II¥* : W¥ — WM  This completes the approximation of the
delay variable.

Having the approximation of the spatial variable (the spaces H¥) and the delay variable

(the spaces W™ and operators D), we define the finite dimensional state space Z™* by
ZNM = HY x HY x WM (3.4)

and state operator AMM(q) on ZV* by

& v
A | @ | = —BLAYe -1 2 g(q)(s)AN(T(s) - @)d6> : (3.5)
r T + DNMT

Finally, we state the finite dimensional estimation problem of interest: Find ¢ € @ that
minimizes

T¥M(g) =D "M (@)t D) = wil? (3:6)

where v™*(q)(t,1) is the fourth component of the state vector z¥*(¢)(t) given by

SN0 = T QOP 0+ [ T QU= PP FOs. ()

11



Here TV (q) is the semigroup generated by A¥*(g) and P} is the canonical orthogonal
projection of Z onto Z%*. Using arguments similar to those in the proof of Theorem 2.2,
it i1s readily seen that Z¥* and J™™ are continuous in g for ¢ in the compact set Q. Thus,
for each N, M, the problem for (3.6) - (3.7) has a solution §™*. To obtain convergence and
continuous dependence (with respect to the observations v;) of the parameter estimates
g™™ obtained in the finite dimensional problems for (3.6), it suffices under the assumption
that @ is compact (for details, see [B], [BKu]) to argue: For arbitrary {¢"*} C Q with
q™M — ¢, we have zVM (¢VM)(t) — z(q)(t) where zM* and z are given by (3.7) and (2.9),
respectively. It is readily argued that this convergence holds under reasonable assumptions
on zo and F(t) if one first argues that T™™(¢"*)(¢)P;"*2z — T(g)(t)z for arbitrary
g™ — ¢in @ and z € Z. We give the arguments for this latter convergence in the next
section.

IV. CONVERGENCE ANALYSIS

To give the desired convergence arguments, we need several approximation assumptions,
which we now state.
A2) HY C V C H satisfies |P}’;<I> - <I)|V — 0 and IP","@ -9
A3) WM C W satisfies II_I“w - wiw — 0 as M — oo.
A4) DM : WM — W™ satisfies
i) D* is dissipative on W™ (uniformly in M),
ii) (A\I = DM)™ 1 IMw —s (A\] — D)~ 'w as M — oo for Re A > 0.

— 0 as N — oo.
‘/

Remark 4.1 Recall that to argue V-coerciveness of the form oy, we used the fact that

ffr g(s)ereds < f_?rg(s)ds. The function e** may be characterized by
& = f(s) = A = D)7 f(s),

where f (s) = 1. The delay approximation scheme defines a natural approximation of e**
given by
) (s) = II™f — MM — DM)7HIM £,

12



In order to argue V-coerciveness of a form ¢} which we define below, we need €Y (s) to

satisfy an inequality analogous to that given above:

/ " d()el (s)ds < / " g(e)ds (4.1)

-r -r

for all sufficiently large M.

Before proving the main semigroup convergence result of this section, we state the fol-

lowing lemma.
Lemma 4.1. Assume that A3) and A4) hold, and that W"™ and D™* are given by
(3.2) and (3.3). Then D™'™ is dissipative on W™ (uniformly in N, M ) and

|(M = D)7 IVMT — (AT = DY)7'T| = 0 (4.2)

as M — oo for each N and eachT € WV,

The proof is straightforward. We now prove the semigroup convergence result referred to

above.

Theorem 4.2. Assume that Al) — A4) and (4.1) hold. If ¢™™ — q in Q, then
THM(gMM)PYMz — T(q)(t)z for all z € Z, uniformly in bounded t-intervals.

Proof First, the dissipativeness of DV implies that the AV*(¢) are dissipative on
Zg, uniformly in N and M. Thus, we can apply the “resolvent convergence” form of the

Trotter-Kato theorem, as in the proof of Theorem 2.2. Let

d
z = Y = RA(.A((])).’E (43)
r
and
N
ZNM PN — R/\(AN'}\l(qN,M))PZN,AI‘T’ (4_4)
ryM
where
£ PY¢ £y
z=\|n|and P Yz=1| Pin |={ 9"
C P‘LV,MC CN,M

13



Solving (4.3) and (4.4) for ®, &~ we find
0
A28 4 ;1)- (EI - / g(q)(s)e“ds> AD

-7

1 /O
=n+2¢= 2 [ o)A [01- D)7 (- ©) ds (45)
and .
, 1
AN 4 P (EIN'” - /_Jg(q”'”)(s)e’,{'(s)ds) AV PN
— T,N + >\€N _ leM /; g(qN,M )(S)AN [(/\I—— DN,M)—I(CN.M _ £N)] ds. (4.6)

As in the proof of Theorem 2.2, it is sufficient to argue that [~ — @| — 0 as ¢™* — ¢.

To this end, define a bilinear form ¢}’ on V x V by

ax'<q><<1u\1'>=v<w>,,+-,1;(EI— / g(q)(s)e&'(s)ds) o(3,¥).  (47)

-T

From the technical condition (4.1) it follows that o} is V-coercive, uniformly in M and g,

for some A > 0. That is, there exists C > 0 so that

Clol® + A8 <o} (g)(®, %) (4.8)

2
H

for all ¢ € Q. Also, it is easy to see that for all @, ¥ € V,

loa(9)(®, ¥) — o3 (9)(®, ¥)| <
< K(M)[2|, [¥],

4]
/ g()(s) [ — e ()] ds| - I - |8 |91,

-r

(4.9)

where K(M) — 0 as M — oo. Now, let &~ € H" satisfy B~ — |, - 0as N — oo
(existence of a @~ follows from A2)). Thus it is sufficient to argue that |&~ — &)va — 0.

Letting 6% = & — @~ we have

Cla" — & + 318" ~ &Y < ol (g™ )(8" - &,6%)
= o¥(¢"M)(@",6") - oa(g)(2,8") + oa(g)(, 8%) — o (g™ ¥)(8",6")
= (¥ =0, 6%), + MEY - £,8%),

0
_ 1 / g(qN'M)(S)O' (()\I _ DN.M)-—l(CN,M _ €N)’6N) dS

N M
P -

14



TTT——— L amem o o e e

+ % / 9(a)($)o (A = D)7H(¢ = €),8") ds + oa(g)(2,6") — 0¥ (¢™™)(",6")

-r

< caln™ =l [6%], +csle™ — €], - J6%] (a)
I{ 0 N, M N,M\=-1 N, M N -1 N
tmr [ @I =D )T~ )= MI-D) =0 a8, (b)
0 0
+ / = g(™¥)(s) = 2g(q)(s)] / Ao=0|c(6) — €| dbds - I - 6] (©)
—_r P p s
+ ox(0)(®,6) — 02 (g™ (@, 6) (d)
+oa(@" M) (@, 8%) — o (g7 ) (@, 6) (e)
+ oy (g"M )P — Y, 6") (f)

The proof is completed by applyving A2) to (a), (4.2) to (b), (2.16) to (¢), (2.17) to (d),
(4.9) to (e), and the uniform V-boundedness of o} to (f).

V. COMPUTATIONAL RESULTS

In this section we describe some of our computational results for the Boltzmann damping
model under consideration. Recall that for the approximation scheme which we have
described, the underlying spatial and delay discretizations should satisfy assumptions A2)
- A4) and (4.1). For most of the numerical experiments which we have run, we have based
our approximations on cubic splines for the spatial variable and a version of the so-called
averagi.ng scheme for the delay variable.

More specifically, for a beam of length ! and a given positive integer N, consider the
partition of the spatial interval [0,1] given by A" = {z;}},, where z; = < -1 Let
S3(A™) denote the set of cubic splines with knots A", and {b¥ "*!, the standard cubic
B-spline basis set for S3(A") (see [Pr]). Next, we can in the usual way define a new
set of functions {bY}/7' so that the fixed end (z = 0) boundary conditions are satisfied.
That is, define b = 2b¥, — B¥ + 20V, and b = Y for i = 2,3,... ,N + 1. Then define
BY = (bY (D), d—dibf'(l),bf'), and set HY = span {B{,...,By,,}. For this choice of H",

assumption A2) is satisfied.
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For the delay variable, we use the “non-uniform mesh” version of the averaging scheme
(see [FI]). That is, for a delay length r, positive integer M and kernel function ¢(s), set
C= f_(_)r g(s)ds. Then the partition

_ M M
—r =1, <ty_,

<ot <M =0

M
is defined uniquely by the condition f:,{," g(s)ds = % For the kernel functions ¢g(s) under
j

consideration, which are increasing and have a singularity at s = 0, this results in a finer

mesh near s = 0. Next, let x}' denote the characteristic function on the interval [t} ¢} ].
Define the space W™ = span {x¥,...,x™}. Finally, the operator DM . WM 5 WM s
defined by

aj-1 — a5
D”(Zam "‘ZW*J”
J

j=1 7-1
where ap = 0. It can be shown (see [FI]) that W* and D* satisfy A3)-A4) and that (4.1)
is satisfied.

We have conducted a number of numerical tests using simulated data in which we ob-
served the convergence and efficiency of the scheme for identifying the parameters EI, a,
B, p, m and J. However, here we present an application using experimental data in order
to demonstrate that the Boltzmann damping model can provide a very good prediction of
vibration response in certain flexible structures. In particular, we use data from a series of
experiments carried out at the Mechanical Systems Laboratory at SUNY at Buffalo. (We
gratefully acknowledge Dr. D.J. Inman, H. Cudney, and Z. Liang for their collaboration
on these experiments.) In these experiments, a cantilevered composite beam with tip body
was excited from an initial rest configuration via an impulse from a force hammer. A laser
vibrometer was used to collect measurements of the tip velocity of the beam in response
to the force. These measurements were used as observations in our least-squares criterion
J (recall (2.8)).

For the particular experiment presented here, we used a composite beam of length
[ = 1.968 ft., width 0.3345 ft., and thickness 0.01968 ft., with a tip body (a cylinder
of radius 0.08036 ft. and height 0.27224 ft.) with mass m = 0.075714 slug and moment of
inertia J given by J = cjzm with ¢; = 0.088265 ft. The beam density was p = 0.021441
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slug/ft. We observed the tip velocity of the beam after it was hit with an impulse hammer
at z, = 0.984 ft. The shape, height and duration of the input were modelled using
the input signal from a transducer in the hammer. We recorded 2048 time observations
at At = 0.001953 seconds intervals, thus giving time domain data over the period {0, 4}
seconds.

The actual structure (a composite material beam with a cylindrical body attached near
the free end) used in our experiments entailed the “tip” body being attached with its
center of mass at 1.9352 ft. from the clamped end of the beam of 1.968 ft. in length. So
in fact we did not have a “tip body” as described in the model above. To compensate for
this inaccuracy in the model, we took ¢ = 0 but allowed ¢; and m (i.e., J and m) along
with EI, a, and 3 to be estimated by our algorithm. We would expect to (and did) obtain
“effective” values of ¢; and m that are slight perturbations of the measured values given
above.

We then used data from the experiment (1018 observations in the time period [0.01172,2]
- we did not use any observations from the time period for the hammer hit) with the
procedure we have described in order to estimate the stifiness parameter EI, the damping
parameters a and 3, and c¢; and m. In these computations we chose p=205and r =
0.01. We obtained the values EI = 103.892 lb - ft2, & = 48.4G69, # = 654.109, ¢; =
0.091026 ft., and m = 0.070044 slug. A value of EI was also determined, using standard
modal techniques, to be 107.103 Ib - ft?. Thus our value is well within the 10% range
which is generally thought to be the accuracy of the modal techniques. The estimated
values for ¢; and m are also within 10% of the measured values. We point out that an
heuristic physical interpretation of the large value of § is that the material has a “memory”
which fades very rapidly. This type of short “memory” makes sense for materials which
are “more elastic than viscous” as our experimental beam appeared to be. In fact, for
the case of no “memory” at all (i.e. g(s) = 0), our model reduces to that of a purely
elastic Euler-Bernoulli beam. Thus the presence of a small delay (the memory) in the
mathematical model drastically changes the qualitative behavior of the model (from elastic
to viscoelastic). (That small delays can affect behavior of a model has been observed

elsewhere; see [DLP]).
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We depict in Figures 1, la, and 2 the time domain response and FFT for our beam
model and experiment. In these figures, the solid line graphs represent the experimental
data while the dashed lines represent the model response corresponding to our estimated
parameter values. It is clear that we have obtained a very good fit to data with this model.
Other similar experiments and computational studies ([BWIC}, [BFWIC]) illustrate the
usefulness of the techniques described in this paper in studying damping in distributed

parameter models for structures.
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